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Abstract. We consider Brownian particles with the ability to take up energy from the environment, to
store it in an internal depot, and to convert internal energy into kinetic energy of motion. Provided a
supercritical supply of energy, these particles are able to move in a “high velocity” or active mode, which
allows them to move also against the gradient of an external potential. We investigate the critical energetic
conditions of this self-driven motion for the case of a linear potential and a ratchet potential. In the latter
case, we are able to find two different critical conversion rates for the internal energy, which describe the
onset of a directed net current into the two different directions. The results of computer simulations are
confirmed by analytical expressions for the critical parameters and the average velocity of the net current.
Further, we investigate the influence of the asymmetry of the ratchet potential on the net current and
estimate a critical value for the asymmetry in order to obtain a positive or negative net current.

PACS. 05.40.Jc Brownian motion – 05.45.-a Nonlinear dynamics and nonlinear dynamical systems –
05.60.-k Transport processes

1 Introduction

The motion of a “simple” Brownian particle is due to fluc-
tuations of the surrounding medium, i.e. the result of ran-
dom impacts of the molecules or atoms of the liquid or gas,
the particle is immersed in. This type of motion would be
rather considered as passive motion, simply because the
Brownian particle does not play an active part in this mo-
tion. On the other hand, already in physico-chemical sys-
tems a self-driven motion of particles can be found [1]. For
instance, small solid particles floating on a liquid surface
may produce a chemical substance at a spatially inhomo-
geneous rate, which locally changes the surface tension.
This way the substance induces a net capillary force act-
ing on the particle, which results in the particle’s motion.

Recent investigations on interacting self-driven parti-
cles show a broad variety of interesting phenomena, such
as phase transitions and the emergence of self-ordered mo-
tion [2–4]. Here, the focus is on collective effects rather
than on the origin of the particle’s velocity; i.e. it is usually
postulated that the particles move with a certain non-zero
velocity.

In this paper, we focus on the energetic aspects of self-
driven motion in order to derive conditions for an active

a Present address: GMD Institute for Autonomous intelli-
gent Systems, Schloss Birlinghoven, 53754 Sankt Augustin,
Germany.
e-mail: schweitzer@gmd.de

mode of motion. Active motion, as the name suggests, oc-
curs under energy consumption, it is related to processes
of energy storage and conversion into kinetic energy. For
instance on the biological level, cells or simple microor-
ganisms are capable of active, self-driven motion, which
in many cases has been successfully described by stochas-
tic equations [2,5–9].

In order to describe both the random aspects and the
energetic aspects of active motion, we have introduced
a model of active Brownian particles [10–15]. These are
Brownian particles with the ability to take up energy
from the environment, to store it in an internal depot and
to convert internal energy to perform different activities,
such as metabolism, motion, change of the environment,
or signal-response behavior. Since the focus in this paper
is on the energetic aspects of active Brownian particles in
a specific potential, possible changes of the environment
are neglected here.

A very simple mechanism to take-up the additional en-
ergy required for active motion, is the pumping of energy
by space-dependent friction [11]. In this case, the friction
coefficient γ0 becomes a space-dependent function, γ(r),
which in a certain spatial range can be also negative. In-
side this area the Brownian particle, instead of loosing
energy because of dissipative processes, is pumped with
energy, which in turn increases its velocity. Provided a su-
percritical supply of energy, the particle should be able
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to move with a velocity larger than the average thermal
velocity.

While such an approach will be able to model the spa-
tially inhomogeneous supply of energy, it has the draw-
back not to consider processes of storage and conversion
of energy. In fact, with only a space-dependent friction,
the Brownian particle is instantaneously accelerated or
slowed down, whereas e.g. biological systems have the ca-
pability to stretch their supply of energy over a certain
time interval.

In order to develop a more realistic model of active
motion, we have considered an internal energy depot for
the Brownian particles [14,15], which allows to store the
taken-up energy in the internal depot, from where it can
be converted e.g. into kinetic energy, namely for the accel-
eration of motion. Additionally, the internal dissipation of
energy, due to storage and conversion (or metabolism in
a biological context) can be considered.

With these extensions, the Brownian particle becomes
in fact a Brownian motor [16–18], which is fueled some-
where and then uses the stored energy with a certain effi-
ciency [15] to move forward, also against external forces.
Provided a supercritical supply of energy, we have found
that the motion of active Brownian particles in the two-
dimensional space can become rather complex [14].

In this paper we investigate the one-dimensional mo-
tion of an ensemble of Brownian particles with internal
energy depot in piecewise linear potentials. One particu-
lar example is the ratchet potential, i.e. a periodic poten-
tial which lacks the reflection symmetry. Ratchet systems
recently attracted much interest with respect to trans-
port phenomena on the microscale, since they provide a
mechanism to transfer the undirected motion of Brownian
particles into a directed motion. Hence, the term Brown-
ian rectifiers [19] has been established. In order to reveal
the microscopic mechanisms resulting in directed move-
ment, different physical ratchet models have been pro-
posed [20], such as forced thermal ratchets [21], or stochas-
tic ratchets [22,23], or fluctuating ratchets [24,25].

The model discussed in this paper, aims to add a new
perspective to this problem which is based on the idea
of internal energy storage. In Section 2, we discuss the
basic features of our model without specifying an exter-
nal potential, and derive the equations of motion both for
the general case and the overdamped limit. In particu-
lar, we point to the possible existence of a “high veloc-
ity” or active mode of motion for the Brownian particle,
in addition to the usual passive mode of motion. In Sec-
tion 3, the necessary conditions for such an active mode
of motion are investigated for the case of a linear poten-
tial. For the overdamped limit, we derive critical param-
eters of energy conversion, which allows the particle to
move also against the direction of the external force, i.e.
to move “uphill” the potential gradient. The results are
applied to the motion of Brownian particles in a ratchet
potential in Section 4. After investigating the determinis-
tic motion of a single particle in Section 4.1, we discuss the
energetic conditions for the establishment of a net current
for the deterministic motion of an ensemble of particles in

Section 4.2. We show that, dependent on the conversion
of internal into kinetic energy, a net current into different
directions can be established. The critical parameters for
the energy conversion and the resulting velocity of the net
current, which are found by means of computer simula-
tions, are compared with the analytical results obtained
in Section 2. We also investigate the influence of the asym-
metry of the ratchet potential on the establishment of the
net current.

2 Equations of motion of pumped
Brownian dynamics

The motion of simple Brownian particles in a space-
dependent potential, U(r) can be described by the
Langevin equation:

ṙ = v; m v̇ = −γ0v−∇U(r) + F(t) (1)

where γ0 is the friction coefficient of the particle at posi-
tion r, moving with velocity v. F(t) is a stochastic force
with strength D and a δ-correlated time dependence

〈F(t)〉 = 0; 〈F(t)F(t′)〉 = 2Dδ(t− t′). (2)

Using the fluctuation-dissipation theorem, we assume that
the loss of energy resulting from friction, and the gain of
energy resulting from the stochastic force, are compen-
sated in the average, and D can be expressed as:

D = kBTγ0 (3)

where T is the temperature and kB is the Boltzmann con-
stant.

In addition to the dynamics described above, the
Brownian particles considered here are pumped with en-
ergy from the environment, which they can store in an
internal depot. Further, internal energy can be converted
into kinetic energy. Considering also internal dissipation,
the resulting balance equation for the internal energy de-
pot, e, of a pumped Brownian particle is given by:

d
dt
e(t) = q(r) − c e(t)− d(v) e(t) (4)

q(r) is the space-dependent pump rate of energy and c
describes the internal dissipation assumed to be propor-
tional to the depot energy. d(v) is the rate of conversion
of internal into kinetic energy which should be a function
of the actual velocity of the particle. A simple ansatz for
d(v) reads:

d(v) = d2v
2 (5)

where d2 > 0 is the conversion rate of internal into kinetic
energy. The energy conversion results in an additional
acceleration of the Brownian particle in the direction of
movement, expressed by the vector ev = v/v. Hence, the
equation of motion for the pumped Brownian particles has
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to consider an additional driving force, d2e(t)v. In [14,15],
we have postulated a stochastic equation, which is consis-
tent with the Langevin equation (1):

ṙ = v; mv̇ + γ0v +∇U(r) = d2e(t)v + F(t). (6)

If we restrict ourselves to the one-dimensional case, i.e.
the space coordinate is given by x and further assume
m = 1 for the mass and q(r) = q0 = const. for the influx
of energy, the dynamics for the pumped Brownian motion,
equations (6, 4) can be specified as follows:

ẋ = v

v̇ = −(γ0 − d2e(t))v −
∂U(x)
∂x

+
√

2D ξ(t)

ė = q0 − ce− d2v
2e (7)

where ξ is a stochastic force with white-noise fluctuations:

〈ξ(t)ξ(t′)〉 = δ(t− t′). (8)

In order to find a solution for the coupled equations (7),
let us now consider a relaxation of the dynamics on dif-
ferent time scales. If we assume that the velocity v(t) is
changing much faster than the space coordinate x(t), for
v(t) (Eq. (7)) a formal solution can be given:

v(t) = v(0) exp
{
−γ0t+ d2

∫ t

0

e(t′)dt′
}

+ exp
{
−γ0t+ d2

∫ t

0

e(t′)dt′
}

×
∫ t

0

exp

{
γ0t
′ − d2

∫ t′

0

e(t′′)dt′′
}

×
[
−∇U +

√
2kBTγ0 ξ(t′)

]
dt′. (9)

This solution however depends on the integrals over e(t),
reflecting the influence of the energy depot on the veloc-
ity. If we further assume a fast relaxation of the depot,
e(t), compared to the relaxation of the velocity v(t), the
corresponding equation of equation (7) can be solved, and
we obtain with the initial condition e(0) = 0 the following
quasistationary value for the energy depot:

e0 =
q0

c+ d2v2
(10)

which yields a possible maximum value of emax
0 = q0/c.

The overdamped limit is obtained by considering a
fast relaxation of the velocities, in which case the set of
equation (7) can be further reduced to:

v(t) = − 1
γ0 − d2e0

∂U

∂x
+
√

2kBTγ0

γ0 − d2e0
ξ(t). (11)

We note that, due to the dependence of e0 on v2 = ẋ2,
equation (11) is coupled to equation (10). Thus, the over-
damped equation (11) could be also written in the form:(

γ0 − d2
q0

c+ d2 ẋ2

)
ẋ = −∂U

∂x
+
√

2kBTγ0 ξ(t). (12)

Equation (12) indicates a cubic equation for the veloci-
ties in the overdamped limit, i.e. the possible existence
of non-trivial solutions for the stationary velocity. For
the further discussion, we neglect the stochastic term in
equation (12) and denote the stationary values of v(t) by
v0(x). Further, the force resulting from the gradient of
the potential, F(x) = −∇U , is introduced. Then, equa-
tion (12) can be rewritten as:[

d2γ0 v
2
0 − d2Fv0 − (q0d2 − cγ0)

]
v0 = cF. (13)

Depending on the value of F and in particular on the sign
of the term (q0d2 − cγ), equation (13) has either one or
three real solutions for the stationary velocity, v0. The
always existing solution expresses a direct response to the
force in the form:

v0(x) ∼ F(x). (14)

This solution results from the analytic continuation of
Stokes’ law, v0 = F/γ0, which is valid for d2 = 0. We
will denote this solution as the “normal response” mode
of motion, since the velocity v has the same direction as
the force F resulting from the external potential U(x).

As long as the supply of the energy depot is small, we
will also name the normal mode as the passive mode, be-
cause the particle is simply driven by the external force.
More interesting is the case of three stationary velocities,
v0, which significantly depends on the (supercritical) in-
fluence of the energy depot. In this case which will be
discussed in detail in the following section, the particle
will be able to move in a “high velocity” or active mode
of motion. For the one-dimensional motion, in the active
mode only two different directions are possible, i.e. a mo-
tion into or against the direction of the force F.

But already in the two-dimensional case there are in-
finitely different possibilities. This conclusion is of impor-
tance when discussing stochastic influences as will be done
in a forthcoming paper [26]. In the one-dimensional case,
the influence of noise is rather weak, because of the lim-
ited number of possible directions, but in the two- and
three-dimensional case, the active motion of the particles
is very sensitive to stochastic influences, which may deter-
mine the direction of motion in the active mode.

3 Deterministic motion in a linear potential

3.1 Stationary solutions

In the following, we restrict the discussion to the one-
dimensional, deterministic motion of the particle, corre-
sponding to D = 0 in equation (7). Further, we may as-
sume that the force resulting from the gradient of the
potential is constant. Then, we have the two coupled
equations for v(t) and e(t):

v̇ = −(γ0 − d2e(t))v + F

ė = q0 − ce− d2v2e. (15)
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The stationary solutions of equation (15) are obtained
from v̇ = 0 and ė = 0:

v0 =
F

γ0 − d2e0
; e0 =

q0
c+ d2v2

0

(16)

which lead to the known cubic polynom for the amount of
the constant velocity v0, equation (13):

d2γ0v3
0 − d2Fv2

0 − (q0d2 − cγ0)v0 − cF = 0. (17)

Here vn+1
0 is defined as a vector |v0|n v0.

For a first insight into the possible solutions of
equation (17), we consider the force free motion, F = 0.
Then equation (17) has either one or three stationary so-
lutions which read:

v
(1)
0 = 0, v

(2,3)
0 = ±

√
q0
γ0
− c

d2
· (18)

The corresponding bifurcation diagram is shown in
Figure 1a which displays a typical fork bifurcation. The
bifurcation point is given by:

dbif
2 =

c γ0

q0
· (19)

Above a critical supply of energy, which is expressed in
terms of the conversion parameter d2, we find the occur-
rence of two new solutions for the stationary velocity, cor-
responding to the active modes of motion. For F = 0,
v

(2)
0 and v(3)

0 both have the same amount but different di-
rections. Below the critical threshold the passive mode of
motion, v(1)

0 = 0, is the only stable solution. At the bifur-
cation point, a change of the stability occurs, consequently
above the critical value of d2 the active modes of motion
are assumed stable.

For the case F = const. 6= 0, the analysis of
equation (17) leads to a different bifurcation diagram
shown in Figure 1b. Above a critical supply of energy, we
find the appearance of two high velocity or active modes
of motion. One of these active modes has the same di-
rection as the driving force, thus it can be understood
as the continuation of the normal solution. As Figure 1b
shows, the former passive normal mode, which holds for
subcritical energetic conditions, is transformed into an ac-
tive normal mode, where the particle moves into the same
direction, but with a much higher velocity. Additionally,
in the active mode a new high-velocity motion against the
direction of the force F becomes possible. While the first
active mode would be rather considered as a normal re-
sponse to the force F, the second active mode appears as
unnormal (or non-trivial) response, which corresponds to
an “uphill” motion (cf. Fig. 2).

It is obvious that the particle’s motion “downhill” is
stable, but the same does not necessarily apply for the pos-
sible solution of an “uphill” motion. Thus, in addition to
equation (17) which provides the values of the stationary
solutions, we need a second condition which guarantees
the stability of these solutions. Before this is carried out,
we want to derive a handy expression for the stationary

10
−3

10
−2

10
−1

10
0

10
1

d2

−0.5

0.0

0.5

v 0

(a)

10
−3

10
−2

10
−1

10
0

10
1

d2

−0.5

0.0

0.5

v 0

(b)

Fig. 1. Stationary velocities v0 (Eq. (17)) vs. conversion rate
d2: (a) for F = 0, (b) for F = +7/8. Above a critical value of
d2, a negative stationary velocity indicates the possibility to
move against the direction of the force. Parameters: q0 = 10,
γ0 = 20, c = 0.01.

x

U(x)

Fig. 2. Sketch of the one-dimensional deterministic motion of
the particle in the presence of a constant force F = −rU(x) =
const. Provided a supercritical amount of energy from the de-
pot, the particle might be able to move “uphill”, i.e. against
the direction of the force.

velocities in the case F 6= 0. With the assumption that the
term cF is small, the stationary solutions of equation (17)
can be given as:

v
(1)
0 = 0, v

(2,3)
0 =

F

2γ0
±
√
F 2

4γ2
0

+
(
q0
γ0
− c

d2

)
. (20)
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Table 1. Results for the stability analysis (Eq. (24)).

0 < d2 < 0.027 : 1 stable node
0.027 < d2 < 0.046 : 1 stable node, 1 instable

node, 1 saddle point
0.046 < d2 < 2.720 : 1 stable focal point,

1 instable focal point,
1 saddle point

2.720 < d2 : 2 stable focal points,
1 saddle point

We note that equation (20) is a sufficient approximation
for the stationary velocities, especially in a certain dis-
tance from the bifurcation point, thus it will be also used
in Section 4.1.

3.2 Stability analysis

For the stability analysis, we consider small fluctuations
around the stationary values, v0 and e0:

v = v0 + δv; e = e0 + δe;
∣∣∣∣δvv0

∣∣∣∣ ∼ ∣∣∣∣δee0

∣∣∣∣� 1. (21)

Inserting equation (21) into (15), we find after lineariza-
tion:

δ̇v = δv (−γ0 + d2e0) + δe (d2v0)
δ̇e = δv (−2d2e0v0) + δe (−c− d2v

2
0).

(22)

With the ansatz:

δv ∼ exp {λt}; δe ∼ exp {λt} (23)

we find from equation (22) the following relation for λ:

λ(1,2) = −1
2

(γ0 + c+ d2v
2
0 − d2e0)

±
√

1
4 (γ0+c+d2v2

0−d2e0)2−c(γ0−d2e0)−d2v2
0(γ0+d2e0).

(24)

In general, we need to discuss equation (24) for the three
possible solutions v0 which result from equation (17). De-
pendent on whether the λ for each solution have real or
complex positive or negative values, we are able to clas-
sify the types of the possible stationary solutions in this
case. The results are summarized in Table 1. The phase
plots shown in Figures 3a, b present more details. Further,
Figure 4 shows the real part <(λ) of equation (24) for the
active mode corresponding to the “uphill” motion of the
particle, which is the most interesting one.

We find that below the bifurcation point which is
dbif

2 = 0.027 for the given set of parameters, only one
stable node exists in the {v, e} phase space, which corre-
sponds to the passive normal mode. Then, a subcritical
bifurcation occurs which leads to 3 stationary solutions: a
stable and an instable node, and a saddle point, since all
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Fig. 3. Phase trajectories in the {v, e} phase space for the
motion into or against the direction of the driving force, which
correspond either to positive or negative velocities. (a) d2 = 2.0
corresponding to an instable “uphill” motion, (b) d2 = 4.0
corresponding to a stable “uphill” motion, respectively. Other
parameters see Figure 1.

the λ are real. At d2 = 0.046, however, the nodes turn
into focal points. With respect to the “uphill motion”
we find in Figure 4 the occurrence of an instable node
at d2 = 0.027, which then becomes an instable focus for
0.046 < d2 < 2.720. The respective real parts of λ are
equal in this range, i.e. the λ1,2 are complex. The stabil-
ity condition is satisfied only if <(λ) ≤ 0, which is above
a second critical value dcrit

2 = 2.72 for the given set of
parameters. That means, for d2 > 2.72, the instable focal
point becomes a stable focus, which is also clearly shown
in the phase plots of Figures 3a, b. In both figures, we see
a stable focal point for positive values of the velocity, v,
which correspond to the stable motion “downhill”, i.e. in
the direction of the driving force. For d2 = 2.0 < dcrit

2 ,
the phase plot for negative values of v shows an insta-
ble focal point, which turns into a stable focal point for
d2 = 4.0 > dcrit

2 .
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Fig. 4. Real part of λ(1,2) (Eq. (24)) vs. conversion parameter
d2 for the stationary motion against the force, F. Parameters
see Figure 1.

Thus, we can conclude that for dbif
2 < d2 an active

mode of motion becomes possible, which also implies the
possibility of an “uphill” motion of the particle. However,
only for values dcrit

2 < d2, we can expect a stable motion
against the direction of the force. The interesting result of
a possible stable “uphill-motion” of particles with internal
energy depot will be employed in the following section,
where we turn to a more sophisticated, piecewise linear
potential.

For our further investigations, it will be useful to have
a handy expression for the critical supply of energy, dcrit

2 ,
which allows a stable “uphill” motion. This will be de-
rived in the following, with only a few approximations.
For the parameters used during the computer simulations
discussed later, Figure 4 and Table 1 indicate that the
square root in equation (24) is imaginary, thus the stabil-
ity of the solutions depends on the condition:

γ0 + c+ d2(v2
0 − e0) ≥ 0. (25)

If we insert the stationary value e0 (Eqs. (16, 25)) leads
to a 4th order inequation for v0 to obtain stability:

(γ0c− d2q0) ≤ v4
0 d

2
2 + v2

0 (γ0d2 + 2cd2) + c2. (26)

For a stable stationary motion of the particle, both
equations (17, 26) have to be satisfied.

The critical condition for stability just results from the
equality in equation (26), which then provides a replace-
ment for the prefactor (γ0c− d2q0) in equation (17). If we
insert the critical condition into equation (17), we arrive
at a 5th order equation for v0:

v5
0 + v3

0

(
2c
d2

)
+ v2

0

(
F
d2

)
+ v0

(
c

d2

)2

+
cF
d2

2

= 0. (27)

In order to simplify the further discussion, we assume
that the internal dissipation is negligible, c = 0. Then,
equation (27) gives the simple nontrivial solution:

v3
0 = − F

d2
; if c = 0. (28)

0.0 1.0 2.0 3.0
|F|

0

2

4

6

8

10

12

d 2

Fig. 5. Critical conversion rate, dcrit
2 (Eq. (30)) vs. amount of

the driving force, |F |, to allow a stable motion of the particle
both “downhill” and “uphill” (cf. Fig. 2). For d2 > dcrit

2 , the
particle is able to move also against the direction of the force.
Parameters, see Figure 1.

This expression can be used to eliminate the stationary
velocity, v0 (in Eq. (26)). With the assumption c = 0, we
obtain now from the critical condition, i.e. from the equal-
ity in equation (26), a relation between the force, F, and
the conversion parameter, d2. Combining equations (26)
and (28) results in

(−F )4/3d2 + γ0(−F )2/3d
2/3
2 − q0d

4/3
2 = 0. (29)

Because of d2 > 0, the trivial and the negative solution
of equation (29) can be neglected, and we finally arrive at
the following critical relation for d2(F ):

dcrit
2 =

F 4

8q3
0

(
1 +

√
1 +

4γ0q0
F 2

)3

. (30)

Figure 5 shows dcrit
2 as a function of the force, F . In the

limit of negligible internal dissipation, the relation dcrit
2 (F )

describes how much power has to be supplied by the in-
ternal energy depot in order to allow a stable motion of
the particle in both directions, in particular a stable uphill
motion of the particle.

4 Deterministic motion in a ratchet potential

4.1 Simulation results for a single pumped particle

For further investigations of the motion of pumped parti-
cles, we specify the potential U(x) as a piecewise linear,
asymmetric potential (cf. Fig. 6), which is known as a
ratchet potential:

U(x) =


U0

b
{x− nL}

if nL ≤ x ≤ nL+ b
U0

L− b{(n+ 1)L− x}
if nL+ b ≤ x ≤ (n+ 1)L

(n = 0, 1, 2, ...). (31)
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0 L 2L

Uo

x

U(x)

b b+L

Fig. 6. Sketch of the asymmetric potential U(x) (Eq. (31)).
For the computer simulations, the following values are used:
b = 4, L = 12, U0 = 7 in arbitrary units.

Further, we will use the following abbreviations with re-
spect to the potential U(x) (Eq. (31)). The index i =
{1, 2} refers to the two pieces of the potential, l1 = b,
l2 = L − b. The asymmetry parameter a should describe
the ratio of the two pieces, and F = −∇U = const. is
the force resulting from the gradient of the piecewise lin-
ear potential. Hence, for the potential U(x) (Eq. (31)) the
following relations yield:

F1 = −U0

b
; F2 =

U0

L− b ; a =
l2
l1

=
L− b
b

= −F1

F2

F1 = −U0

L
(1 + a); F2 =

U0

L

1 + a

a
· (32)

Whether or not the particle will be able to leave one of
the potential wells described by equation (31), depends in
a first approximation on the height of the potential bar-
rier, U0, and on the kinetic energy of the particle. For
particles with internal energy depot, the actual velocity
depends also on the conversion of internal into kinetic en-
ergy (Eq. (7)). In agreement with the investigations in the
previous section, we can in principle distinguish between
two different types of motion:

(i) A bound motion, i.e. the particle will not leave
the potential well because of the subcritical supply
of energy from the depot, but its position might
oscillate within the boundaries.

(ii) An unbound motion, i.e. the particle will be able to
leave the potential well because of the supercritical
supply of energy and move freely.

Both types of motion have analogies to the localized and
delocalized states of electrons in solid state physics as will
be discussed in more detail in a forthcoming paper.

In the following, we discuss computer simulations
of the deterministic motion of one pumped Brownian
particle in a ratchet potential. The particle (mass m = 1)
starts its motion outside the potential extrema; hence,
there is an initial force on the particle. The results for a
single particle are shown in Figure 7, where two different
sets of parameters are used:

(i) A small internal dissipation, c, which means a nearly
ideal energy depot, and a large friction coefficient,
γ0, resulting in a strongly damped motion.
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Fig. 7. Trajectory x(t), velocity v(t) and energy depot e(t)
for a single particle moving in a ratchet potential (Fig. 6).
Parameters: (a) q0 = 1.0, γ = 0.2, c = 0.1, d2 = 14.0, (b)
q0 = 10, γ0 = 20, c = 0.01, d2 = 10. Initial conditions:
x(0) ∈ [4, 12], v(0) = 0, e(0) = 0.

(ii) An internal dissipation, c, 10 times larger, an energy
influx, q0, ten times smaller, and a friction coefficient,
γ0, 100 times smaller than in (i), resulting in a weakly
damped motion.

We note, that in the computer simulations always the
complete set of equation (7) for the particles is solved,
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Fig. 8. (a) Energy depot e(t) vs. velocity v(t), (b) prefactor:
γ − d2e(t) for the strongly damped motion of a single particle
(data from Fig. 7b).

regardless of the possible approximations. The trajectories
x(t) in Figure 7 indicate a nearly uniform motion of the
particle into one direction. The continuous motion corre-
sponds to a delocalized state of the particle in the ratchet
potential, whereas for subcritical energetic conditions only
localized states exist. The transition from localized to de-
localized states will be discussed in more detail in a forth-
coming paper [31].

As shown in Figure 7a, the less damped motion of a sin-
gle particle may result in steady oscillations in the velocity,
v(t), and the energy depot, e(t). Only if the damping is
large enough, the velocity and the energy depot may reach
constant values (cf. Fig. 7b). These values are of course
different for each piece of the potential, hence the peri-
odical movement through every maximum or minimum of
the potential results in jumps both in the velocity and the
energy depot, which are followed by oscillations. In the
phase space shown in Figure 8a, the motion of the parti-
cle appears as a transition between two stable fix points,
each of which describes the stable motion on one flank.

In the following, we restrict the discussion to the
strongly damped case. The oscillations which occur in
v and e are damped out on a characteristic time scale,

τ = 1/γ0. If we assume that the particle moves on the
different pieces of the potential {b, L− b} (cf. Fig. 6) dur-
ing the two characteristic time intervals: Tb = b/vb and
TL−b = (L − b)/v(L−b), then the particle is subject to a
constant force only as long as τ � Tb or τ � TL−b, respec-
tively. For times larger than the characteristic time, τ , the
motion of the particle can be described by the equation
of the overdamped limit (Eq. (11)). If we neglect again
stochastic influences, equation (11) can be rewritten in
the form:

0 = −[γ0 − d2e0] v0 + F (33)

where |ẋ| = |v0| = const. is the velocity in the
overdamped limit and F = {F1, F2} is defined by
equation (32). The stationary value for the internal en-
ergy depot, e0, is given by equation (16). If we assume
again that the term cF is small, then the constant veloc-
ity can be calculated from equation (20), with F specified
as F1 or F2, respectively. For any constant force F , there
are two possible non-trivial solutions of equation (20): a
positive and a negative velocity with different, but con-
stant amount, which depend on the gradient of the poten-
tial. The nontrivial values v0 6= 0 of equation (20) can
be compared with the constant values obtained in the
simulations, and we find:

Fig. 7b Eq. (20)
lower value v0 0.665 0.6642 (34)
upper value v0 0.728 0.7288.

The equations (11, 33) for the overdamped limit indicate
that the dynamics remarkably depends on the sign of the
prefactor γ0 − d2e0, which governs the influence of the
potential and the stochastic force. Therefore, the prefactor
should be discussed in more detail, now. Figure 8b shows
that the prefactor γ0 − d2e(t) displays a behavior similar
to the velocity (Fig. 7b). The prefactor jumps between
a positive and a negative constant value, which can be
approximated by means of the constant, e0 (Eq. (16)),
reached after the oscillations damped out. It is shown that
the jump occurs at the same time when the gradient of
the potential changes its sign. This can be also proved
analytically. Using equations (10, 20), the prefactor γ0 −
d2e0 in (11, 33), respectively, can be rewritten and we find
after a short calculation:

1
γ0 − d2e0

=
1

2γ0Fi

[
Fi ±

√
F 2
i + 4

(
q0γ0 − cγ2

0/d2

)]
.

(35)

This means that the product of the prefactor and the po-
tential gradient always has the same positive (or negative)
sign, and the direction of motion for the particle is only
determined by the initial condition.

The prefactor γ0− d2e0 describes the balance between
dissipation and the energy supply from the internal depot
of the particle. Therefore it is expected that the time av-
erage of the prefactor should be zero, when averaged over
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one time period T :

〈γ0 − d2e0〉 T = 0. (36)

This can be proven using T = Tb + TL−b as discussed
above. The values vb, vL−b and eb, eL−b for the related
velocity and energy depot along the different pieces of the
potential can be calculated by means of equations (20, 33)
which leads directly to equation (36).

4.2 Investigation of the net current
for an ensemble of particles

Let us now discuss the deterministic motion of an ensem-
ble of N pumped Brownian particles in a ratchet poten-
tial. For the computer simulations, we have assumed that
the start locations of the particles are equally distributed
over the first period of the potential, {0, L} and their ini-
tial velocity is zero. In the deterministic case, the direction
of motion and the velocity at any time t are mainly deter-
mined by the initial conditions. Hence, particles with an
initial position between {0, b}, which initially feel a force
into the negative direction, most likely move with a neg-
ative velocity, whereas particles with an initial position
between {b, L} most likely move into the positive direc-
tion. This is also shown in Figure 9a, where the velocity
v is plotted versus the initial position of the particles.
Oscillations occur only at the minima and maxima of the
related potential, indicating a strong sensitivity to the ini-
tial condition in these regions. The distribution of the final
velocity is shown in Figure 9b.

From Figure 9b we see two main currents of parti-
cles occurring, one with a positive and one with a nega-
tive velocity, which can be approximated by equation (20).
The net current, however, has a positive direction, since
most of the particles start with the matching initial con-
dition. The time dependence of the averages is shown in
Figure 10. The long-term oscillations in the average veloc-
ity and the average energy depot result from the superpo-
sition of the velocities, which are sharply peaked around
the two dominating values (cf. Fig. 9b).

The existence of periodic stationary solutions, v0(x) =
v0(x ± L), requires that the particles are able to escape
from the initial period of the potential. For a continuous
motion which corresponds to delocalized states, the parti-
cles must be able to move “uphill” on one or both flanks
of the ratchet potential. In Section 3, we already investi-
gated the necessary conditions for such a motion for a sin-
gle flank, and found a critical condition for the conversion
rate, d2 (Eq. (30)). In order to demonstrate the applica-
bility of equation (30) for the ratchet potential, we have
investigated the dependence of the net current, expressed
by the mean velocity 〈v〉, on the conversion rate, d2, for
the overdamped case. The results of computer simulations
are shown in Figure 11.

In Figure 11, we see the existence of two different crit-
ical values for the parameter d2, which correspond to the
onset of a negative net current at dcrit1

2 and a positive
net current at dcrit2

2 . For values of d2 near zero and less
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Fig. 9. (a) Final velocity ve after t = 2.000 simulation steps
(averaged for 10.000 particles) vs. initial location x0 of the
particles. (b) Distribution of the final velocity ve. Parameters
see Figure 7b, initial locations of the particles are equally dis-
tributed over the first period of the ratchet potential {0, L}.

than dcrit1
2 , there is no net current at all. This is due to

the subcritical supply of energy from the internal depot,
which does not allow an uphill motion on any flank of the
potential. Consequently, after the initial downhill motion,
all particles come to rest in the minima of the ratchet po-
tential, with v0 = 0 as the only stationary solution for the
velocity. With an increasing value of d2, we see the oc-
currence of a negative net current at dcrit1

2 . That means,
the energy depot provides enough energy for the uphill
motion along the flank with the lower slope, which, in our
example, is the one with F = 7/8 (cf. Fig. 6). If we in-
sert this value for F into the critical condition (Eq. (30))
a value dcrit1

2 = 2.715 is obtained, which agrees with the
onset of the negative current in the computer simulations,
Figure 11.

For dcrit1
2 ≤ d2 ≤ dcrit2

2 , a stable motion of the particles
up and down the flank with the lower slope is possible,
but the same does not necessarily apply for the steeper
slope. Hence, particles which start on the lower slope with
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Fig. 10. Averaged location 〈x〉, velocity 〈v〉 and energy depot
〈e〉 of 10.000 particles vs. time t. Parameters, see Figure 7b.
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Fig. 11. Average velocity 〈v〉 vs. conversion parameter d2. The
data points are obtained from simulations of 10.000 particles
with arbitrary initial positions in the first period of the ratchet
potential. Other parameters, see Figure 7b.

a positive velocity, cannot continue their motion into the
positive direction since they are not able to climb up the
steeper slope. Consequently, they turn their direction on
the steeper slope, then move downhill driven by the force
into the negative direction, and continue to move into
the negative direction while climbing up the lower slope.
Therefore, for values of the conversion rate between dcrit1

2

and dcrit2
2 , we only have an unimodal distribution of the

velocity centered around the negative value:

v1 =
F

2γ0
−
√
F 2

4γ2
0

+
q0
γ0

= −0.6855 for F =
7
8

(37)

which is independent of d2 if the term (c/d2) in
equation (20) is negligible, which holds for the consid-

ered case. For d2 > dcrit2
2 , the energy depot also supplies

enough energy for the particles to climb up the steeper
slope, consequently a periodic motion of the particles into
the positive direction becomes possible, now. In our exam-
ple, the steeper slope corresponds to the force F = −7/4
(cf. Fig. 6) which yields a critical value dcrit1

2 = 5.985, ob-
tained by means of equation (30). This result agrees with
the onset of the positive current in the computer simula-
tions, Figure 11.

For d2 > dcrit2
2 , we have a bimodal velocity distribu-

tion, as also shown in Figure 9b. The net current, which
results from the average of the two main currents, has a
positive direction in the deterministic case, because most
of the particles start into a positive direction, as discussed
above. We may simply assume, that the number of parti-
cles in each direction is roughly proportional to the length
of the flank where they started from, which is also in-
dicated by the velocity distribution (Fig. 9b). Then the
mean velocity in the strongly damped case can be ap-
proximated by:

〈v〉 =
1
N

N∑
i=1

vi =
1
3
v1 +

2
3
v2 (38)

where v1 and v2 are the stationary velocities on each flank,
which, in the limit of an nearly ideal energy depot, can be
determined from equation (20). With the negative veloc-
ity, v1 (Eq. (37)) and the positive velocity,

v2 =
F

2γ0
+

√
F 2

4γ2
0

+
q0
γ0

= 0.664 for F = −7
4

(39)

we find from equation (38) for d2 > dcrit2
2 an average ve-

locity, 〈v〉 = 0.216, which also agrees with the computer
simulations (Fig. 11).

The results of the computer simulations have demon-
strated that in the deterministic case for the given special
initial condition, i.e. the equal distribution of particles
over the ratchet period, the direction of the net current
can be adjusted by choosing the appropriate values of the
conversion rate, d2.

The critical values for d2, on the other hand, depend on
the slope of the two flanks of the potential, expressed by
the force F . Lower slopes also correspond to lower values
of the conversion rate, because less power is needed for
the uphill motion.

We conclude our results by investigating the influence
of the slope on the establishment of a positive or neg-
ative net current. With a fixed height of the potential
barrier, U0, and a fixed length L, the ratio of the two
different slopes is described by the asymmetry parame-
ter a = l2/l1 = −F1/F2 (Eq. (32)). The occurrence of
a current in the ratchet potential requires the possibil-
ity of uphill-motion, which depends on the critical supply
of energy, described by equation (30). In order to obtain
the critical value for the asymmetry of the potential, we
replace the force F in equation (30) by the parameter
a (Eq. (32)). In our example, the flank l1 of the potential
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Fig. 12. Average velocity 〈v〉 vs. asymmetry parameter a
(Eq. (32)). The data points are obtained from simulations of
10.000 particles with arbitrary initial positions in the first pe-
riod of the ratchet potential. (◦): d2 = 10 ( ), (�): d2 = 20
(−−). Other parameters see Figure 7b.

has the steeper slope, so the critical condition is deter-
mined by F1 = U0/L (1 + a). As the result, we find:

acrit =
L

U0

[
−γ0

2
d
−1/3
2 +

√
γ2

0

4
d
−2/3
2 + q0d

1/3
2

]3/2

− 1

(40)

acrit ≥ 1 gives the critical value for the asymmetry,
which may result in a reversal of the net current. For
a > acrit, the flank l1 is too steep for the particles, there-
fore only a negative current can occur which corresponds
to the unimodal velocity distribution discussed above. For
1 < a < acrit, however, the particles are able to move up-
hill either flank. Hence, also a positive current can estab-
lish and the velocity distribution becomes bimodal, which
results in a positive net current.

The current reversal from a negative to a positive net
current is shown in Figure 12. Dependent on the value
of the conversion rate, d2, we see the switch from the
negative to the positive value of the net current at a
critical value of the asymmetry parameter a. Because of
the definition of a, the results for a < 1, are the inverse of
the results for a > 1. Obviously, for a symmetric ratchet,
a = 1 no net current occurs, because the two main currents
compensate. From equation (40), we obtain acrit = 3.5 for
d2 = 10, and acrit = 6.5 for d2 = 20, which both agree with
the results of the computer simulations (Fig. 12). Further,
the results of Figure 12 show that the stationary velocities
are independent of d2 in the limit of an nearly ideal energy
depot, which is also indicated by equation (20).

5 Summary and conclusions

In this paper, we have investigated the dynamics of
Brownian particles with an internal energy depot, which
can be filled by the take-up of energy from the
environment. This extension which is inspired by the bio-

logical features of active motion, has several aspects:

(i) the spatial or spatial-temporal inhomogeneous
distribution of energy from the environment can be
considered,

(ii) the supply of depot energy for different activities, i.e.
for accelerated motion or signal-response behavior,
can be modeled,

(iii) in addition to external dissipative processes caused
by friction, internal dissipation can be included,

(iv) the adjustment of the time scale for the relaxation of
the energy depot allows to consider delay effects, i.e.
for the acceleration of motion.

In this paper, we are mainly interested in the question
how the internal energy depot will affect the particle’s mo-
tion in an external potential. We found that provided some
supercritical energetic conditions, the Brownian particles
are able to move in a “high velocity” or active mode of
motion characterized by a velocity much larger than the
Stokes velocity. The latter one can be denoted as the pas-
sive mode of motion. In addition to stochastic forces, it
is basically determined by the response to the gradient of
an external potential. One of the possible active modes of
motion can be understood as a continuation of the passive
or Stokes mode, the particles motion in the direction of
the force being accelerated.

Additionally, we also found an active mode which de-
scribes a motion of the particle against the gradient of
an external potential. We have investigated the critical
conditions for the deterministic motion of the particle in
the overdamped limit for the case of a linear potential.
We found that the “uphill” motion is described by two
critical conversion rates. The bifurcation diagram shows
that, at a critical value dbif

2 , the possibility of an “uphill”
motion appears as a new solution for the stationary veloc-
ity, i.e. “uphill” motion requires the existence of multiple
stationary solutions for the velocity. However, this active
mode remains unstable as long as the conversion rate is
below a second critical value dcrit

2 (Eq. (30)), which de-
pends on parameters describing the energy balance, such
as the friction coefficient, γ0, and the influx of energy into
the depot, q0, and on the gradient of the potential, i.e. the
resulting force F. A stable “uphill” motion occurs only for
a supercritical conversion rate.

These results allow us to interpret the deterministic
motion of an ensemble of particles in a ratchet potential,
i.e. a piecewise linear, periodic asymmetric potential with
two different slopes. Initially, the particles are equally dis-
tributed over the first period of the potential. In order to
produce a current, the particles must be able to escape
from the potential well, which depends on the supply of
energy. We are able to find two different critical conver-
sion rates, which describe the onset of a directed current
into the different directions. As long as the particles are
only able to move uphill the flank with the lower slope,
we have an unimodal velocity distribution, corresponding
to a negative net current. But if the particles are able to
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move uphill either flank, we find a bimodal velocity distri-
bution, and a positive net current for the given conditions.
Hence, in the deterministic case the direction of the net
current can be controlled via a single parameter, d2, which
describes the conversion of internal into kinetic energy.
We are able to calculate the critical parameter, as well
as the resulting velocity of the net current from analyti-
cal considerations, which agree with the results found in
the computer simulations. Alternatively, the critical sup-
ply of energy can be also reformulated in terms of a criti-
cal asymmetry of the ratchet potential, which restricts the
occurrence of a (positive or negative) net current.

To conclude the results obtained, we have shown that
an ensemble of pumped Brownian particles moving in a
ratchet potential can produce a directed net current. In
this respect, our result agrees with the conclusions of
other physical ratchet models which have been proposed
to reveal the microscopic mechanisms resulting in directed
movement. Due to [19], p. 295, a ratchet system is meant
to be “a system that is able to transport particles in a
periodic structure with nonzero macroscopic velocity al-
though on average no macroscopic force is acting”. Indeed,
we have shown in equation (36) that for the stationary ap-
proximation 〈γ0 − d2e0〉 τ = 0 holds, i.e. the force acting
on the particle is of zero average with respect to one pe-
riod, τ . However, different from other ratchet models, i.e.
the rocking ratchet [27,28,30] or the diffusion ratchet [29]
which assume a spatially uniform time-periodic force, the
force in our model switches between two constant values,
dependent on the moving direction and the flank the par-
ticle is moving on. Hence, it does not represent a spatially
uniform force, and we may conclude that the mechanism
of motion which equation (11) is based on, should be dif-
ferent from the previous mechanisms which originate di-
rected motion in a ratchet potential.

In this paper, we have restricted the discussion to the
deterministic motion of Brownian particles with an inter-
nal energy depot. We note that the stochastic motion of
an ensemble of Brownian particles in a ratchet potential
will be investigated in detail in a forthcoming paper [31],
which pays particular attention to the influence of stochas-
tic effects on the establishment of the net current. Addi-
tionally, we will also discuss the non-equilibrium distribu-
tion functions for Brownian particles with internal energy
depot [26].

As a final remark, we note in a more general sense that
the introduction of an internal energy depot adds an inter-
esting and new element to the known model of Brownian
particles, which can be useful in two different respects.
With respect to the physical aspects, the dynamical sys-
tem now has a new degree of freedom, which increases the
phase space, Γ = {xi, vi, e}. Due to the additional energy
supply, the system is driven into non-equilibrium. Hence,
a qualitative new behavior in the particle’s motion can be
obtained.

With respect to possible biological aspects, the exten-
sion of the Brownian particle model by mechanisms of en-
ergy take-up, storage and conversion, should contribute to
the development of a microscopic theory of active biologi-

cal motion. The final goal of such a project could be a mi-
croscopic image of well known phenomenological models
of biological motion, taking into account energy balances
that are related to the mechanisms of energy pumping and
energy dissipation.
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Berlin, 1997).

2. T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, O. Shochet,
Phys. Rev. Lett. 75, 1226 (1995).

3. E.V. Albano, Phys. Rev. Lett. 77, 2129 (1996).
4. D. Helbing, T. Vicsek, New J. Phys. 1, 13.1 (1999)

(http://www.njp.org/).
5. R.T. Tranquillo, D. Lauffenburger, J. Math. Biol. 25, 229

(1987).
6. H.G. Othmer, S.R. Dunbar, W. Alt, J. Math. Biol. 26, 263

(1988).
7. Biological Motion, edited by W. Alt, G. Hoffmann

(Springer, Berlin, 1990).
8. R. Dickinson, R.T. Tranquillo, J. Math. Biol. 31, 563

(1993).
9. M. Schienbein, H. Gruler, Bull. Math. Biol. 55, 585 (1993).

10. F. Schweitzer, L. Schimansky-Geier, Physica A 206, 359
(1994).

11. O. Steuernagel, W. Ebeling, V. Calenbuhr, Chaos, Solitons
& Fractals 4, 1917 (1994).

12. L. Schimansky-Geier, M. Mieth, H. Rose, H. Malchow,
Phys. Lett. A 207, 140 (1995).

13. F. Schweitzer, in Stochastic Dynamics, edited by L.
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